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1. INTRODUCTION 

In the numerical simulation of fluid flow problems in regions 
with arbitrary shaped boundaries, finite-element methods 
(FEM) [l&3] and control-volume based finite-element 
methods [46] are generally used. For problems in which the 
position of large solution gradients is known a priori, such 
as those involving boundary layers, localized grid refinement 
can be used in these regions. There are several problems, 
however, where the position of steep gradients is not always 
known a priori. This is the case of compressible flows for 
example. Adaptive procedures for finite-element meshes are 
then necessary. Mesh generation and mesh enrichment are 
the most popular methods [7]. These techniques are time 
consuming and there is currently a great deal of research 
being done in this field [8]. 

The diffuse approximation method (DAM) is a new 
method for finding estimates of a scalar field cp and its deriva- 
tives [9, IO]. The starting point is to estimate the Taylor 
expansion of qn at a chosen point M,(.u,. y,) by a weighted 
least squares method which uses only the values of cp at the 
nearest points M,(x,,,I;). The main advantage of this method 
is that it only requires sets of discretization nodes and no 
geometric finite elements. These nodes could be generated 
by several techniques such as random shooting methods or 
octree-based methods. In any case it is much easier to gen- 
erate nodal points than to build finite-element meshes. This 
method has been successfully used for steady-state diffusion 
problems [IO, I I]. It has been shown that the DAM is much 
better than the FEM for the computation of gradients [9, IO]. 
Moreover it ensures uniform convergence of the successive 
derivate estimates when the sampling point density increases 
[IO]. Application of the DAM to the post-treatment of 
electromagnetic field computations has been reported [12]. 

To date no attempt appears to have been made to apply 

the diffuse approximation in the field of computational fluid 
dynamics. Thus the main objective of this work is to demon 
strate that this new method can be used to solve fluid flow 
and heat transfer problems with sufficient complexities that 
a fair test of the formulation can be made. 

In the following sections, the formulation of the diffuse 
approximation is presented and applied to three example 
problems. 

2. THE DIFFUSE APPROXIMATION 

For a scalar field cp(x,y) defined in a two-dimensional 
domain, let us pick a set of Npoints M,(s,, ?;) in the vicinity of 
a chosen point M(s,y). The diffuse approximation provides 
estimates of cp and its derivates at M from the nodal values 
cp,. The basic idea is to estimate the Taylor expansion of cp at 
M by a weighted least squares method which uses only the 
values of cp at the nearest points M,. By truncating the series 
at order k, one obtains the corresponding estimates of the 
derivatives at order k. 

Therefore, as far as we are concerned by second-order 
partial differential equations, a second-order expansion is 
sufficient. Let us then estimate the second-order Taylor 
expansion of cp, at M as : 

cp, = i p,, . u, 
,= II 

(1) 

where 

[P,!] = [I, (a-X). (j:-,r), (v-,-.$, 
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NOMENCLATURE 

continuum domain 
functional 
column veclor of monomials 
p-transpose 
current point 
Nusselt number 
Prandtl number 
inner cylinder radius 
outer cylinder radius 
Rayleigh number 
Reynolds number 
CartesIan coordinates 
velocity components in the .V and j‘ 
directions 

- 

The %, coefIicients are the estimates of cp and its successive 
derivatives up to order 2 at ,Vf. These coeficicnts are no\\ 
determined by minimizing the quantity : 

where c,l,,(lM. hl,) is a weighting function which peaks at M 
and decays rapidly. Thus only the nearest points to M are 
involved in (2). By writing the six conditions : 

?I 
-_=O 
&, 

(3) 

one gets the following (6 x 6) linear system : 

where j’ = 0.5. 
Once the system (4) has been solved and the r, have been 

determined, one finally obtains the desired approximate 
values at A( : 

3. APPLICATION TO FLUID FLOW PROBLEMS 

Suppose that the governing equation for the scalar field cp 
is the convectionPdiffusion equation : 

By assigning different meanings of r and S one can recover 
different equations of fluid flow and heat transfer problems. 

In order to solve equation (6). we first replace the coti- 
tinuum domain ‘/ by a pattern of discrete points within //. 
The chosen weighting function is then used to select a number 
of points around each isolated point where the diffuse 
approximation of equation (6) is finally written. This leads 
to a linear system whose unknowns are the nodal values cp,. 
The resulting matrix ia sparse and without any particular 
structure. 

where $. co. Tare the stream-function. the vorticity and the 
temperature respectively. 

5. WEIGHTING FUNCTIONS 

In this work. the vorticity stream-function formulation of When applymg the DAM, one important choice 15 the 
the Navier-Stokes equations 1? used. Thus, the question of weighting function. These functions can be chosen in many 
how pressure and velocity are coupled does not arise. The ways. Triangular. Hanning and Gaussian functions are easy 

r* dimensionless vertical velocity II* = I,L/v 
r temperature. 

Greek symbols 
CI vector of estimated derivate 
_I i normal angle 
I kinematic ciscosity 

(P scalar field 

Ii/ stream-function 
c ‘, vorticily 
o,,,(M.M,) weight-function. 

transport equations for vorticity tr). stream-function tb and 
temperature T are solved sequentially, first for c’/. then for 
T and finally for 01. Relaxations factors are used for each 
variable. 

4. BOUNDARY CONDITIONS AND 
CONVERGENCE CRITERIA 

Dirichlet-type boundary conditions are introduced 
directly in the matrix system while Neumann boundary con- 
ditions are introduced via the x coefficients. The normal 
derivative at a boundary node is : 

c’cp -- _ cos (;,, . 

?I1 
z+sin(y). 2 

where ;’ is the normal angle. Using equation (7). this can be 
written as follows : 

&+I 
~ = cos(;s).r, +sin(y).rl 
irr 

Now c(, and rl are expressed as functions of nodal values 
of cp at the neighbouring nodes by inverting system (4). This 
leads to an equation relating these nodal values to the value 
of cp at the boundary node. 

Unlike the boundary conditions for the stream-function 
and temperature. which are invariable and specified. the vor- 
ticity values at the boundary are not known CI priori and 
are calculated in terms of the neighbouring stream-function 
values. Different formulations can be employed for this pur- 
pose [IX]. In this work. the method used by Kettleborough 
e/ al. [ 141 is followed. 

The convergence criteria used for the numerical cal- 
culations includes the relative changes between consecutive 
iterations : 
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to implement and have proven to work well. Of course 
additional numerical studies need to be done before the 
advantages and disadvantages of these different windows can 
be known. 

The results presented in this study have been obtained by 
using the following Gaussian window : 

(0, (M, M,) = exp [-(r/l.)‘] 

where Y is the distance between M and M,. The choice of i 
gives us the practical window aperture as i.12 In (10). In this 
work the window aperture has been chosen large enough to 
overlap at least 6 nodal points around the computational 
point. 

4 

ovr I ‘v?--p’ , , r_l/; A 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 

6. NUMERICAL EXAMPLES u* 

In this section the present method is applied to three over- 
worked problems for which benchmark solutions are avail- 
able. 

Fig. I. Comparisons of u-velocity along a vertical line 
through the geometric center of the driven cavity with a 

Reynolds number of 400. 

6.1. Driven cacitJ 

We first examine the case of the driven cavity. The flow 
was computed at Reynolds number based on the wall velocity 
and the cavity height ranging from 100 to 1500. Results 
were obtained on two uniformly spaced grids of IO x 10 and 
20 x 20 grid points, A relaxation factor of 0.2 was used for 
stream-function and vorticity. Table 1 gives the values of 
the maximum stream-function in the central vortex. The 
computed u-velocity profiles at the vertical midsection of the 
cavity at Reynolds number 400 and 1000 are presented in 
Figs. 1 and 2 For comparison, the results of Ghia rl al. [15] 
have been included. From these figures, it can be seen that the 
proposed method produces good results even with relatively 
coarse grids, and it has the expected asymptotic behaviour 
as the grid is refined. 

Re=lOOO 

0.4 

3 
Ghia et al. [ 151 

z Diffuse approximation (20x20) 
6.2. Natural cont>ection in a square cavil> 

We now discuss the case of natural convection in a square 
cavity. In the present work, numerical results using the 
diffuse approximation have been obtained for Rayleigh num- 
bers between IO’ and lo5 on the two uniform grids presented 
before. Table 2 compares the calculated Nusselt numbers 
which have been used as a basis for comparison with those 
obtained by De Vahl Davis [16]. The results are in good 
agreement with the benchmark solution, especially for the 
lower Rayleigh numbers. At higher Rayleigh numbers more 
points are needed near the walls for an accurate evaluation 
of the temperature gradient. Figure 3 shows variation of 
vertical velocity (v* = nL/v) along the horizontal midplane 
(J/L = 0.5) for a Rayleigh number of 5 x 104. The abbrevi- 
ations DAM and CVFEM stand for the diffuse approxi- 
mation method and the control-volume finite-element 
method that we have used for comparison. 

Fig. 2. Comparisons of u-velocity along a vertical line 
through the geometric center of the driven cavity with a 

Reynolds number of 1000. 

As is evident from this figure, the diffuse approximation 
method produces results as good as those from the well 
known control-volume-based finite-element method [4-61. 

Table 2. Results for the global Nusselt number in the natural 
square cavity 

6.3. Natural conrection in an annular space 
It remains to be demonstrated that the method can be used 

in arbitrary shaped geometries. To this end, we consider 

Rayleigh number 

Reference [16] (41 x 41) 
This work (20 x 20) 

IO’ IOJ IO’ 

1.116 2.234 4.487 
1.117 2.301 4.533 

Table 1. Results for the maximum value of I,!I in the driven cavity 

Reynolds number 100 400 1000 1500 

Reference [15] (129~ 129) 0.103 423 0.1139423 0.1 17 929 0.120 377 
This work (20 x 20) 0.102 44 0.107 57 0.107 35 0.106 64 
This work (10 x 10) 0.097 9 0.102 2 



Technical Notes 211 

- t D.A.M.(21*21) 

t ~. C.V.F.E.M.(21’21) 

.70,00.0----- 02 . ~j 0.4 0.6 0.8 1.0 

X’ 

Fig. 3. Vertical velocity profile along the horizontal midplane of the cavity 

briefly here the case of natural convection in the two-dimen- 
sional annular space shown in Fig. 4. In this case, a triangular 
finite-element mesh was generated and the vertices of the 
triangular elements were used as calculation points. The 
mesh consisted of 506 grid points (I6 points in the radial 
direction 20 points in the inner angular direction and 40 
points in the outer angular direction). The calculations were 
carried out for an annulus with a radius ratio of 2.6 and 
using air (Pr = 0.7) as the working fluid. Here again, Nusselt 
numbers have been calculated. They are reported in Table 3 

Y 
t 

I 
x 
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-- 

Fig. 4. Annular space 

together with the results of reference [l7]. As in the previous 
examples. we again find that the diffuse approximation 
method gives accurate results. 

7. CONCLUSION 

In the present work, the diffuse approximation method is 
presented and applied to the solution of fluid flow and heat 
transfer problems. This method provides solutions com- 
parable in accuracy to standard numerical methods. Com- 
parative results of test cases show good agreement and vali- 
date the applicability of the method. However, the work 
which has been reported is still exploratory and further effort 
is needed to fully explore the limitations of the formulation. 
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INTRODUCTION 

Following his molecular theory of gases, Maxwell [I] arrived 
in 1866 at an equation describing the movement of a com- 
ponent by diffusion caused by a concentration gradient in a 
mixture. Concerning this publication by Maxwell, Stefan [2] 
noted: “Das Studium der Maxwell’schen Abhandlung ist 
nicht leicht”.? He felt prompted to give an illuslrative expla- 
nation of the diffusion processes in the light of hydrodynamic 
laws. St&n clearly recognized that diffilsion can give rise to 
a convective movement in the mixture. He also dcrivcd an 
equation for the calculation of the total transport rate of a 
component caused bq dill‘usion in a mixture with a con- 
centration gradient. 

Onsager and Fuoss [3] seem to be the First who clearly 
distinguished between the ditferent transport mechanismc 
and suggested a calculation of the total transport of a com- 
ponent as a sum of diffusion and convection movcmcnt. At 
about the same time as Onsagcr and Fuoss, Kuusinen [4] 

t ‘Maxwell’s considerations are not simple ’ 

discussed the concept of diffusion to some extent According 
to his opinion. the diffusion process is seen as a movement of 
a component relative to the average velocity of the mixture. 
Disregarding the clear formulation of the diffusion process. 
new elements in a physical sense compared with Stefan’s view 
of diffusion are scarce in Kuusinen’s publication. Later on. 
the same questions were considered by Darken [5] and Hart- 
ley and Crank [6], who gave a precise explanalion of the 
diffusion process and of the diffusion-caused convection in 
mixtures using markers in diffusion space and coordinate 
transformation. 

According to Kuusinen [4]. Darken [5] and Hartley and 
Crank [6], the total flow ralc ri, of a component j in a binary 
mixture with a concentration gradient should be calculated 
by 

ri, = .I, + Y,li. (1) 

In this equation, Y, is the molt fraction of the component j. 
ri is the sum of all tlow rates in the diffusion space and .I, is 
the flow rate by pure diffusion, see Fig. 1. 

For a binary mixture consisting of the components j and 
X-. the total flow! rate ri of the mixture is given by 


